jaclearn.rl.algo.math#

Classes

Functions

compute_gae(rewards, values, next_val, ...)

discount_cumsum(x, gamma)

Compute the discounted cumulative summation of an 1-d array.

discount_return(x, discount)

Compute the discounted return summation of an 1-d array.

normalize_advantage(adv)

Class LinearValueRegressor

class LinearValueRegressor[source]#

Bases: object

__init__()#
__new__(**kwargs)#
fit(states, steps, returns)[source]#
predict(states, steps)[source]#
register_snapshot_parts(env)[source]#
coeffs = None#

Class ObservationNormalizer

class ObservationNormalizer[source]#

Bases: object

__call__(o)[source]#

Call self as a function.

__init__(filter_mean=True)[source]#
__new__(**kwargs)#
normalize(o)[source]#

Functions

compute_gae(rewards, values, next_val, gamma, lambda_)[source]#
discount_cumsum(x, gamma)[source]#

Compute the discounted cumulative summation of an 1-d array. From rll/rllab

discount_return(x, discount)[source]#

Compute the discounted return summation of an 1-d array. From rll/rllab

normalize_advantage(adv)[source]#