Source code for jactorch.transforms.vision.functional.image
#! /usr/bin/env python3
# -*- coding: utf-8 -*-
# File : image.py
# Author : Jiayuan Mao
# Email : maojiayuan@gmail.com
# Date : 12/14/2018
#
# This file is part of Jacinle.
# Distributed under terms of the MIT license.
from PIL import Image
import numpy as np
from torchvision.transforms import functional as TF
__all__ = [
'to_tensor', 'to_pil_image',
'normalize',
'pad', 'crop', 'resize', 'hflip', 'vflip',
'five_crop', 'ten_crop',
'adjust_brightness', 'adjust_contrast', 'adjust_saturation', 'adjust_hue', 'adjust_gamma', 'to_grayscale',
'rotate', 'affine'
]
to_tensor = TF.to_tensor
to_pil_image = TF.to_pil_image
normalize = TF.normalize
[docs]
def pad(img, padding, mode='constant', fill=0):
if isinstance(padding, int):
padding = (padding, padding, padding, padding)
elif len(padding) == 2:
padding = (padding[0], padding[1], padding[0], padding[1])
else:
assert len(padding) == 4
if mode == 'constant':
img_new = TF.pad(img, padding, fill=fill)
else:
np_padding = ((padding[1], padding[3]), (padding[0], padding[2]), (0, 0))
img_new = Image.fromarray(np.pad(
np.array(img), np_padding, mode=mode
))
return img_new
[docs]
def crop(img, x, y, w, h):
return TF.crop(img, y, x, h, w)
center_crop = TF.center_crop
resize = TF.resize
hflip = TF.hflip
vflip = TF.vflip
five_crop = TF.five_crop
ten_crop = TF.ten_crop
to_grayscale = TF.to_grayscale
rotate = TF.rotate
affine = TF.affine
adjust_brightness = TF.adjust_brightness
adjust_contrast = TF.adjust_contrast
adjust_saturation = TF.adjust_saturation
adjust_hue = TF.adjust_hue
adjust_gamma = TF.adjust_gamma