Source code for jactorch.transforms.vision.functional.image

#! /usr/bin/env python3
# -*- coding: utf-8 -*-
# File   : image.py
# Author : Jiayuan Mao
# Email  : maojiayuan@gmail.com
# Date   : 12/14/2018
#
# This file is part of Jacinle.
# Distributed under terms of the MIT license.


from PIL import Image
import numpy as np

from torchvision.transforms import functional as TF

__all__ = [
    'to_tensor', 'to_pil_image',
    'normalize',
    'pad', 'crop', 'resize', 'hflip', 'vflip',
    'five_crop', 'ten_crop',
    'adjust_brightness', 'adjust_contrast', 'adjust_saturation', 'adjust_hue', 'adjust_gamma', 'to_grayscale',
    'rotate', 'affine'
]


to_tensor = TF.to_tensor
to_pil_image = TF.to_pil_image

normalize = TF.normalize


[docs] def pad(img, padding, mode='constant', fill=0): if isinstance(padding, int): padding = (padding, padding, padding, padding) elif len(padding) == 2: padding = (padding[0], padding[1], padding[0], padding[1]) else: assert len(padding) == 4 if mode == 'constant': img_new = TF.pad(img, padding, fill=fill) else: np_padding = ((padding[1], padding[3]), (padding[0], padding[2]), (0, 0)) img_new = Image.fromarray(np.pad( np.array(img), np_padding, mode=mode )) return img_new
[docs] def crop(img, x, y, w, h): return TF.crop(img, y, x, h, w)
center_crop = TF.center_crop resize = TF.resize hflip = TF.hflip vflip = TF.vflip five_crop = TF.five_crop ten_crop = TF.ten_crop to_grayscale = TF.to_grayscale rotate = TF.rotate affine = TF.affine adjust_brightness = TF.adjust_brightness adjust_contrast = TF.adjust_contrast adjust_saturation = TF.adjust_saturation adjust_hue = TF.adjust_hue adjust_gamma = TF.adjust_gamma