Source code for jactorch.transforms.image.functional
#! /usr/bin/env python3
# -*- coding: utf-8 -*-
# File : functional.py
# Author : Jiayuan Mao
# Email : maojiayuan@gmail.com
# Date : 10/29/2018
#
# This file is part of Jacinle.
# Distributed under terms of the MIT license.
from PIL import Image
import numpy as np
from torchvision.transforms import functional as TF
[docs]
def pad(img, padding, mode='constant', fill=0):
if isinstance(padding, int):
padding = (padding, padding, padding, padding)
elif len(padding) == 2:
padding = (padding[0], padding[1], padding[0], padding[1])
else:
assert len(padding) == 4
if mode == 'constant':
img_new = TF.pad(img, padding, fill=fill)
else:
np_padding = ((padding[1], padding[3]), (padding[0], padding[2]), (0, 0))
img_new = Image.fromarray(np.pad(
np.array(img), np_padding, mode=mode
))
return img_new
[docs]
def pad_multiple_of(img, multiple, mode='constant', fill=0):
h, w = img.height, img.width
hh = h - h % multiple + multiple * int(h % multiple != 0)
ww = w - w % multiple + multiple * int(w % multiple != 0)
if h != hh or w != ww:
return pad(img, (0, 0, ww - w, hh - h), mode=mode, fill=fill)
return img