Source code for jactorch.models.vision.vgg

#! /usr/bin/env python3
# -*- coding: utf-8 -*-
# File   : vgg.py
# Author : Jiayuan Mao
# Email  : maojiayuan@gmail.com
# Date   : 03/31/2018
#
# This file is part of Jacinle.
# Distributed under terms of the MIT license.

"""Functions to build VGG models."""

import math
import functools

import torch.nn as nn
import torch.utils.model_zoo as model_zoo

from jactorch.io import load_state_dict


__all__ = [
    'VGG', 'make_vgg',
    'vgg11', 'vgg11_bn',
    'vgg13', 'vgg13_bn',
    'vgg16', 'vgg16_bn',
    'vgg19', 'vgg19_bn',
    'reset_vgg_parameters'
]


[docs] class VGG(nn.Module):
[docs] def __init__(self, cfg, batch_norm=False, incl_p5=True, incl_fcs=True, num_classes=1000): super(VGG, self).__init__() self.incl_p5 = incl_p5 self.incl_fcs = self.incl_p5 and incl_fcs self.incl_cls = self.incl_fcs and num_classes is not None if not self.incl_p5 and cfg[-1] == 'M': cfg.pop() self.features = self.make_layers(cfg, batch_norm=batch_norm) if self.incl_fcs: self.fc = nn.Sequential( nn.Linear(512 * 7 * 7, 4096), nn.ReLU(True), nn.Dropout(), nn.Linear(4096, 4096), nn.ReLU(True), nn.Dropout(), ) if self.incl_cls: self.classifier = nn.Linear(4096, num_classes) self.reset_parameters()
[docs] def reset_parameters(self): reset_vgg_parameters(self)
[docs] def forward(self, x): x = self.features(x) if self.incl_fcs: x = x.view(x.size(0), -1) x = self.fc(x) if self.incl_cls: x = self.classifier(x) return x
[docs] @staticmethod def make_layers(cfg, batch_norm=False): layers = [] in_channels = 3 for v in cfg: if v == 'M': layers += [nn.MaxPool2d(kernel_size=2, stride=2)] else: conv2d = nn.Conv2d(in_channels, v, kernel_size=3, padding=1) if batch_norm: layers += [conv2d, nn.BatchNorm2d(v), nn.ReLU(inplace=True)] else: layers += [conv2d, nn.ReLU(inplace=True)] in_channels = v return nn.Sequential(*layers)
cfgs = { 'A': [64, 'M', 128, 'M', 256, 256, 'M', 512, 512, 'M', 512, 512, 'M'], 'B': [64, 64, 'M', 128, 128, 'M', 256, 256, 'M', 512, 512, 'M', 512, 512, 'M'], 'D': [64, 64, 'M', 128, 128, 'M', 256, 256, 256, 'M', 512, 512, 512, 'M', 512, 512, 512, 'M'], 'E': [64, 64, 'M', 128, 128, 'M', 256, 256, 256, 256, 'M', 512, 512, 512, 512, 'M', 512, 512, 512, 512, 'M'], } model_urls = { 'vgg11': 'https://download.pytorch.org/models/vgg11-bbd30ac9.pth', 'vgg13': 'https://download.pytorch.org/models/vgg13-c768596a.pth', 'vgg16': 'https://download.pytorch.org/models/vgg16-397923af.pth', 'vgg19': 'https://download.pytorch.org/models/vgg19-dcbb9e9d.pth', 'vgg11_bn': 'https://download.pytorch.org/models/vgg11_bn-6002323d.pth', 'vgg13_bn': 'https://download.pytorch.org/models/vgg13_bn-abd245e5.pth', 'vgg16_bn': 'https://download.pytorch.org/models/vgg16_bn-6c64b313.pth', 'vgg19_bn': 'https://download.pytorch.org/models/vgg19_bn-c79401a0.pth', } fc_mapping = { 'fc.0.weight': 'classifier.0.weight', 'fc.0.bias': 'classifier.0.bias', 'fc.3.weight': 'classifier.3.weight', 'fc.3.bias': 'classifier.3.bias', 'classifier.weight': 'classifier.6.weight', 'classifier.bias': 'classifier.6.bias' }
[docs] def make_vgg(cfg_id, batch_norm, pretrained, url_id, incl_fcs=True, num_classes=1000): model = VGG(cfgs[cfg_id], batch_norm=batch_norm, incl_fcs=incl_fcs, num_classes=num_classes) if pretrained: pretrained_model = model_zoo.load_url(model_urls[url_id]) for k, v in fc_mapping.items(): pretrained_model[k] = pretrained_model.pop(v) if num_classes != 1000: del pretrained_model['classifier.weight'] del pretrained_model['classifier.bias'] try: load_state_dict(model, pretrained_model) except KeyError: pass # Intentionally ignore the key error. return model
[docs] def make_vgg_contructor(cfg_id, url_id, batch_norm=False): func = functools.partial(make_vgg, cfg_id=cfg_id, url_id=url_id, batch_norm=batch_norm) func.__name__ = url_id func.__doc__ = url_id.replace('vgg', 'VGG ').replace('_bn', ' (with batch normalization)') func.__doc__ += '(configuration: {})'.format(cfg_id) return func
vgg11 = make_vgg_contructor('A', 'vgg11') vgg13 = make_vgg_contructor('B', 'vgg13') vgg16 = make_vgg_contructor('D', 'vgg16') vgg19 = make_vgg_contructor('E', 'vgg19') vgg11_bn = make_vgg_contructor('A', 'vgg11_bn', batch_norm=True) vgg13_bn = make_vgg_contructor('B', 'vgg13_bn', batch_norm=True) vgg16_bn = make_vgg_contructor('D', 'vgg16_bn', batch_norm=True) vgg19_bn = make_vgg_contructor('E', 'vgg19_bn', batch_norm=True)
[docs] def reset_vgg_parameters(m, fc_std=0.01, bfc_std=0.001): if isinstance(m, nn.Conv2d): n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels m.weight.data.normal_(0, math.sqrt(2. / n)) if m.bias is not None: m.bias.data.zero_() elif isinstance(m, nn.BatchNorm2d): m.weight.data.fill_(1) m.bias.data.zero_() elif isinstance(m, nn.Linear): m.weight.data.normal_(0, fc_std) if m.bias is not None: m.bias.data.zero_() elif isinstance(m, nn.Bilinear): m.weight.data.normal_(0, bfc_std) if m.bias is not None: m.bias.data.zero_() else: for sub in m.modules(): if m != sub: reset_vgg_parameters(sub, fc_std=fc_std, bfc_std=bfc_std)