Source code for jactorch.models.vision.resnet

#! /usr/bin/env python3
# -*- coding: utf-8 -*-
# File   : resnet.py
# Author : Jiayuan Mao
# Email  : maojiayuan@gmail.com
# Date   : 03/31/2018
#
# This file is part of Jacinle.
# Distributed under terms of the MIT license.

"""Functions to buildResNet models."""

import math
import functools

import torch.nn as nn
import torch.utils.model_zoo as model_zoo

from jactorch.io import load_state_dict
from jactorch.nn import ResidualConvBlock, ResidualConvBottleneck


__all__ = [
    'ResNet', 'make_resnet',
    'resnet18', 'resnet34', 'resnet50', 'resnet101', 'resnet152',
    'reset_resnet_parameters'
]


[docs] class ResNet(nn.Module):
[docs] def __init__(self, block, layers, incl_gap=False, num_classes=1000): super(ResNet, self).__init__() self.incl_gap = incl_gap self.incl_cls = self.incl_gap and num_classes is not None self.inplanes = 64 self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False) self.bn1 = nn.BatchNorm2d(64) self.relu = nn.ReLU(inplace=True) self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) self.layer1 = self._make_layer(block, 64, layers[0]) self.layer2 = self._make_layer(block, 128, layers[1], stride=2) self.layer3 = self._make_layer(block, 256, layers[2], stride=2) self.layer4 = self._make_layer(block, 512, layers[3], stride=2) if self.incl_gap: self.avgpool = nn.AvgPool2d(7, stride=1) if self.incl_cls: self.fc = nn.Linear(512 * block.expansion, num_classes)
[docs] def reset_parameters(self): return reset_resnet_parameters(self)
def _make_layer(self, block, planes, blocks, stride=1): downsample = None if stride != 1 or self.inplanes != planes * block.expansion: downsample = nn.Sequential( nn.Conv2d(self.inplanes, planes * block.expansion, kernel_size=1, stride=stride, bias=False), nn.BatchNorm2d(planes * block.expansion), ) layers = list() layers.append(block(self.inplanes, planes, stride, downsample)) self.inplanes = planes * block.expansion for i in range(1, blocks): layers.append(block(self.inplanes, planes)) return nn.Sequential(*layers)
[docs] def forward(self, x): x = self.conv1(x) x = self.bn1(x) x = self.relu(x) x = self.maxpool(x) x = self.layer1(x) x = self.layer2(x) x = self.layer3(x) x = self.layer4(x) if self.incl_gap: x = self.avgpool(x) if self.incl_cls: x = x.view(x.size(0), -1) x = self.fc(x) return x
cfgs = { 'resnet18': (ResidualConvBlock, [2, 2, 2, 2]), 'resnet34': (ResidualConvBlock, [3, 4, 6, 3]), 'resnet50': (ResidualConvBottleneck, [3, 4, 6, 3]), 'resnet101': (ResidualConvBottleneck, [3, 4, 23, 3]), 'resnet152': (ResidualConvBottleneck, [3, 8, 36, 3]), } model_urls = { 'resnet18': 'https://download.pytorch.org/models/resnet18-5c106cde.pth', 'resnet34': 'https://download.pytorch.org/models/resnet34-333f7ec4.pth', 'resnet50': 'https://download.pytorch.org/models/resnet50-19c8e357.pth', 'resnet101': 'https://download.pytorch.org/models/resnet101-5d3b4d8f.pth', 'resnet152': 'https://download.pytorch.org/models/resnet152-b121ed2d.pth', }
[docs] def make_resnet(net_id, pretrained, incl_gap=True, num_classes=1000): model = ResNet(*cfgs[net_id], incl_gap=incl_gap, num_classes=num_classes) if pretrained: pretrained_model = model_zoo.load_url(model_urls[net_id]) if num_classes != 1000: del pretrained_model['fc.weight'] del pretrained_model['fc.bias'] try: load_state_dict(model, pretrained_model) except KeyError: pass # Intentionally ignore the key error. return model
[docs] def make_resnet_contructor(net_id): func = functools.partial(make_resnet, net_id=net_id) func.__name__ = net_id func.__doc__ = net_id.replace('resnet', 'ResNet-') return func
resnet18 = make_resnet_contructor('resnet18') resnet34 = make_resnet_contructor('resnet34') resnet50 = make_resnet_contructor('resnet50') resnet101 = make_resnet_contructor('resnet101') resnet152 = make_resnet_contructor('resnet152')
[docs] def reset_resnet_parameters(m, fc_std=0.01, bfc_std=0.001): if isinstance(m, nn.Conv2d): n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels m.weight.data.normal_(0, math.sqrt(2. / n)) if m.bias is not None: m.bias.data.zero_() elif isinstance(m, nn.BatchNorm2d): m.weight.data.fill_(1) m.bias.data.zero_() elif isinstance(m, nn.Linear): m.weight.data.normal_(0, fc_std) if m.bias is not None: m.bias.data.zero_() elif isinstance(m, nn.Bilinear): m.weight.data.normal_(0, bfc_std) if m.bias is not None: m.bias.data.zero_() else: for sub in m.modules(): if m != sub: reset_resnet_parameters(sub, fc_std=fc_std, bfc_std=bfc_std)